logo

Lithium Extraction from Hybrid Geothermal Power

PDF Publication Title:

Lithium Extraction from Hybrid Geothermal Power ( lithium-extraction-from-hybrid-geothermal-power )

Next Page View | Return to Search List

Text from PDF Page: 001

PROCEEDINGS, 46th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 15-17, 2021 SGP-TR-218 Technology for Lithium Extraction in the Context of Hybrid Geothermal Power William T. Stringfellow and Patrick F. Dobson Lawrence Berkeley National Laboratory, Energy Geosciences Division, Berkeley, CA 94720 wstringfellow@lbl.gov, pfdobson@lbl.gov Keywords: Lithium, critical materials, hybrid systems, resource extraction and recovery ABSTRACT The U.S. Department of Energy Geothermal Technologies Office (GTO) has been in the forefront of sponsoring research investigating the potential recovery of lithium, rare earth elements, and other critical minerals from geothermal brines. It has been proposed that the -generating activities, such as recovery of valuable and critical minerals, including lithium. Lawrence Berkeley National Laboratory is reviewing technology and processes for the recovery and purification of lithium from geothermal brines for GTO, with the objective of enabling the integration of critical materials recovery with geothermal energy production. The purpose of this study is to provide a summary of knowledge, technology, and techniques for extraction and purification of lithium and associated critical materials. Both existing and emerging technologies are examined and evaluated in the context of the unique challenges presented by the extraction of critical materials from geothermal fluids. The study aims to synthesize complex and disparate information in a format that will assist future process development and the advancement of hybrid geothermal power production. 1. INTRODUCTION Lithium is a light and highly reactive metal that is the principal component in one of the most promising forms of high energy-density batteries (Grosjean et al., 2012; Ambrose and Kendall, 2020). As electric vehicles (EV) gain a significant share of the car market, lithium production must grow proportionately with vehicle demand (Grosjean et al., 2012). In addition to use for EV batteries, lithium is a critical material for ceramics, glass, metallurgy, air treatment, pharmaceuticals, and polymers (Bradley et al., 2017). Due to this variety of uses, lithium is on the list of critical materials necessary for the economy and security of the United States (Department of the Interior, 2018). Between 1975 and 2005, world lithium production increased by a factor of about five (Bradley et al., 2017). Average lithium demand rose by 6% annually between 2000 and 2008, driven by demand in both the battery and aluminum applications (Grosjean et al., 2012). The current increased demand for lithium is driven by two types of battery demands: 1) the rapidly growing production of electric vehicles many countries will require a switch to an all-electric vehicle fleet within the next 10-20 years, and 2) the increased demand for battery energy storage to offset the intermittent nature of important renewable energy sources, such as solar and wind. A 2020 World Bank study predicts that this will result in an increase in lithium production from 85 ktons lithium in 2018 to 415 ktons lithium in 2050, representing an increase of 488% (Hund et al., 2020). A recent study by Cochilco (the state mining agency in Chile) predicts that the growing EV market will drive up the global demand of lithium by a factor of 5 over the next ten years, from a current production level of 317 kilotons lithium carbonate equivalent (LCE) to 1790 kilotons LCE in 2030 (Khan, 2020). The US is currently dependent on foreign sources of lithium and it is anticipated that there will be significant growth in US lithium production as part of this market shift. The DOE Geothermal Technologies Office has funded studies to assess the distribution and abundance of lithium within geothermal brines throughout the western US (Neupane and Wendt, 2017; Simmons et al., 2018; Simmons, 2019). Most geothermal brines were found to have lithium concentrations less than 1 ppm, and only 35 samples had lithium concentrations greater than 20 ppm (Neupane and Wendt, 2017; Simmons et al., 2018; Simmons, 2019). All of the samples with higher lithium concentrations were from within the Imperial Valley (CA), where the Salton Sea known geothermal resource area (KGRA) is located (Neupane and Wendt, 2017; Simmons, 2019). It was determined that the Salton Sea field represents by far the largest potential lithium geothermal brine resource in the US, with potential production levels at existing brine flow rates estimated to be 34 to 168 kilotons lithium carbonate equivalent (LCE) per annum (Neupane and Wendt, 2017). The lithium production rate for the Salton Sea geothermal field calculated by Neupane and Wendt (2017) is based on a wide range of measured lithium contents from these brines (90-440 ppm) and assumes a capacity factor of 90% and recovery of lithium at an 80% efficiency from the current geothermal power capacity of just under 400 MWe produced by the power plants operated by CalEnergy and EnergySource. CalEnergy, which currently operates 10 power plants at the Salton Sea, estimates a potential annual lithium production of 90 kilotons LCE from their existing operations and estimates that an additional 210 kilotons LCE could be produced if their current leases were fully exploited (Besseling, 2018). McKibben et al. (2020) estimate that the proven lithium reserves from the Salton Sea geothermal field are on the order of 10,600 metric kilotons of LCE. Clearly, the Salton Sea KGRA has the potential to become a significant source of domestic lithium production (Alston et al., 2020). Technology for the extraction of lithium from saline solutions has been developed and are being commercialized. These technologies, discussed in this paper, offer great promise for the development of a domestic lithium economy; however, geothermal brines from the 1

PDF Image | Lithium Extraction from Hybrid Geothermal Power

lithium-extraction-from-hybrid-geothermal-power-001

PDF Search Title:

Lithium Extraction from Hybrid Geothermal Power

Original File Name Searched:

2021-Stringfellow-Technology-for-Lithium-Extraction-in-the-Context-of-Hybrid-Geothermal-Power.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP