
PDF Publication Title:
Text from PDF Page: 027
Membranes 2022, 12, 343 27 of 27 101. Siekierka,A.Lithiumironmanganeseoxideasanadsorbentforcapturinglithiumionsinhybridcapacitivedeionizationwith different electrical modes. Sep. Purif. Technol. 2019, 236, 116234. [CrossRef] 102. Kim,C.;Srimuk,P.;Lee,J.;Aslan,M.;Presser,V.Semi-continuouscapacitivedeionizationusingmulti-channelflowstreamand ion exchange membranes. Desalination 2018, 425, 104–110. [CrossRef] 103. Suss,M.E.;Baumann,T.F.;Bourcier,W.L.;Spadaccini,C.M.;Rose,K.A.;Santiago,J.G.;Stadermann,M.Capacitivedesalination with flow-through electrodes. Energy Environ. Sci. 2012, 5, 9511. [CrossRef] 104. Ryu,T.;Ryu,J.C.;Shin,J.;Lee,D.H.;Kim,Y.H.;Chung,K.S.Recoveryoflithiumbyanelectrostaticfield-assisteddesorption process. Ind. Eng. Chem. Res. 2013, 52, 13738–13742. [CrossRef] 105. Ryu, T.; Lee, D.H.; Ryu, J.C.; Shin, J.; Chung, K.S.; Kim, Y.H. Lithium recovery system using electrostatic field assistance. Hydrometallurgy 2015, 151, 78–83. [CrossRef] 106. Lee,D.H.;Ryu,T.;Shin,J.;Ryu,J.C.;Chung,K.S.;Kim,Y.H.Selectivelithiumrecoveryfromaqueoussolutionusingamodified membrane capacitive deionization system. Hydrometallurgy 2017, 173, 283–288. [CrossRef] 107. Shi,W.;Liu,X.;Ye,C.;Cao,X.;Gao,C.;Shen,J.Efficientlithiumextractionbymembranecapacitivedeionizationincorporated with monovalent selective cation exchange membrane. Sep. Purif. Technol. 2019, 210, 885–890. [CrossRef] 108. Siekierka,A.;Bryjak,M.;Wolska,J.Theuseofactivatedcarbonmodifiedwithpolypyrroleasasupportingelectrodeforlithium ions adsorption in capacitive deionization. Desalin. Water Treat. 2017, 64, 251–254. [CrossRef] 109. Siekierka, A.; Wolska, J.; Bryjak, M.; Kujawski, W. Anion exchange membranes in lithium extraction by means of capacitive deionization system. Desalin. Water Treat. 2017, 75, 331–341. [CrossRef] 110. Siekierka,A.;Bryjak,M.Novelanionexchangemembraneforconcentrationoflithiumsaltinhybridcapacitivedeionization. Desalination 2019, 452, 279–289. [CrossRef] 111. Siekierka,A.;Kmiecik,E.;Tomaszewska,B.;Wator,K.;Bryjak,M.Theevaluationoftheeffectivenessoflithiumseparationby hybrid capacitive deionization from geothermal water with the uncertainty measurement application. Desalin. Water Treat. 2018, 128, 259–264. [CrossRef] 112. Zhao,X.;Feng,M.;Jiao,Y.;Zhang,Y.;Wang,Y.;Sha,Z.Lithiumextractionfrombrineinanionicselectivedesalinationbattery. Desalination 2020, 481, 114360. [CrossRef] 113. Qiu,Y.;Ruan,H.;Tang,C.;Yao,L.;Shen,J.;Sotto,A.Studyonrecoveringhigh-concentrationlithiumsaltfromlithium-containing wastewater using a hybrid reverse osmosis (RO)-electrodialysis (ED) process. ACS Sustain. Chem. Eng. 2019, 7, 13481–13490. [CrossRef] 114. Recepog ̆lu,Y.K.;Kabay,N.;Yoshizuka,K.;Nishihama,S.;Yılmaz-Ipek,I ̇.;Arda,M.;Yüksel,M.EffectofOperationalConditions on Separation of Lithium from Geothermal Water by λ-MnO2 Using Ion Exchange-Membrane Filtration Hybrid Process. Solvent Extr. Ion Exch. 2018, 36, 499–512. [CrossRef] 115. Umeno,A.;Miyai,Y.;Takagi,N.;Chitrakar,R.;Sakane,K.;Ooi,K.Preparationandadsorptivepropertiesofmembrane-type adsorbents for lithium recovery from seawater. Ind. Eng. Chem. Res. 2002, 41, 4281–4287. [CrossRef] 116. Quist-Jensen,C.A.;Ali,A.;Mondal,S.;Macedonio,F.;Drioli,E.Astudyofmembranedistillationandcrystallizationforlithium recovery from high-concentrated aqueous solutions. J. Memb. Sci. 2016, 505, 167–173. [CrossRef] 117. Huang,Y.;Han,G.;Liu,J.;Chai,W.;Wang,W.;Yang,S.;Su,S.AstepwiserecoveryofmetalsfromhybridcathodesofspentLi-ion batteries with leaching-flotation-precipitation process. J. Power Sources 2016, 325, 555–564. [CrossRef] 118. Torres,W.R.;DíazNieto,C.H.;Prévoteau,A.;Rabaey,K.;Flexer,V.Lithiumcarbonaterecoveryfrombrinesusingmembrane electrolysis. J. Memb. Sci. 2020, 615, 118416. [CrossRef] 119. Abdollahzadeh,M.;Chai,M.;Hosseini,E.;Zakertabrizi,M.;Mohammad,M.;Ahmadi,H.;Hou,J.;Lim,S.;HabibnejadKorayem,A.; Chen, V.; et al. Designing Angstrom-Scale Asymmetric MOF-on-MOF Cavities for High Monovalent Ion Selectivity. Adv. Mater. 2022, 34, 2107878. [CrossRef] 120. Cha-umpong,W.;Li,Q.;Razmjou,A.;Chen,V.ConcentratingbrineforlithiumrecoveryusingGOcompositepervaporation membranes. Desalination 2021, 500, 114894. [CrossRef] 121. Johnston,T.CostStructuresforLithiumCarbonateProduction—AWorldViewCostStructuresforLithiumCarbonateProduction—A World View; Hatch: Mississauga, ON, Canada; Available online: http://www.indmin.com/events/download.ashx/document/ speaker/7125/a0ID000000X0jvsMAB/Presentation (accessed on 14 January 2022). 122. Afonso,P.;Santana,A.;Afonso,P.;Zanin,A.;Wernke,R.CostingmodelsforcapacityoptimizationinIndustry4.0:Trade-off between used capacity and operational efficiency. Procedia Manuf. 2017, 13, 1183–1190. [CrossRef] 123. Steward,D.;Mayyas,A.;Mann,M.EconomicsandchallengesofLi-ionbatteryrecyclingfromend-of-lifevehicles.ProcediaManuf. 2019, 33, 272–279. [CrossRef] 124. KelleherEnvironmental.ResearchStudyonReuseandRecyclingofBatteriesEmployedinElectricVehicles:TheTechnical,Environmental, Economic, Energy and Cost Implications of Reusing and Recycling EV Batteries Project Report; Kelleher Environmental: East York, ON, Canada, 2019.PDF Image | Electro-Driven Materials and Processes for Lithium
PDF Search Title:
Electro-Driven Materials and Processes for LithiumOriginal File Name Searched:
membranes-12-00343-v3.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |