
PDF Publication Title:
Text from PDF Page: 017
Membranes 2022, 12, 343 17 of 27 The CDI process with flowing electrodes (FCDI) was investigated with adsorbing materials developed from reduced graphene oxide and mixed metal oxides and activated carbon. The suspension of fine particles of reduced graphene oxide formed the cathode, and the suspension of the activated carbon formed the anode [106]. A lithium extraction efficiency of 13.684 mg/g was obtained, and the energy consumption per lithium was as small as 0.22 W h/g of Li. The overall process led to 93% of lithium-ion recovery from the model brines, which indicated that the investigated materials could be promising in the recovery of lithium from natural and battery leachate solutions. A summary of CDI processes for lithium recovery is presented in Table 8. 3.3. Hybrid Membrane Systems Involving Electro-Membrane Processes Greater lithium-ion recoveries from any feed source may be achieved through a combination of processes into the treatment trains. Such approaches may not only support a more cost-effective Li extraction but also support higher product purity, lower energy consumption, and safer operation resulting in the more sustainable technologies. The comparison of described methods is presented in Table 9. 3.3.1. Electrodialysis (ED)–Reverse Osmosis (RO) Integration of reverse osmosis and electrodialysis was used for lithium recovery from wastewater [113]. The RO concentrate was used as feed for the ED process. It was noted energy reduction from 26.67 to 7.81 kW h/m3 was achieved. An obtained enrichment concentration factor of 12.32 showed the feasibility for the use of this approach to produce high-volume concentrate. 3.3.2. Ion Exchange Adsorption–Ultrafiltration (UF) A process coupling ion-exchange adsorption and UF was developed to support Li recovery from geothermal waters. λ-MnO2 was produced from spinel-type lithium man- ganese dioxide, grounded to fine particles, and used in a concentration of 1.5 g adsorbent/L. The authors identified advantages of the use of ion exchange–UF hybrid for the separation process of lithium from geothermal water [20,114]. 3.3.3. Adsorptive Ion Exchange Membranes Another approach for selective Li-ion extraction is to combine mass transfer through ion exchange membranes and adsorption within an adsorptive lithium-selective mem- brane [115]. This type of material enables the separation of Li ions from brines at enrich- ments concentration factors up to 62,000 compared to less than 100 for other metal ions. This type of membrane adsorbent may concentrate Li-ions efficiently from seawater even though the native Li-ions concentration in such effluents is very small in comparison to Na+, K+, Mg2+, or Ca2+ ions. Most of the metal ions adsorbed on the membrane were desorbed to the solution by the treatment with a 0.75 M HCl solution. The desorbed fractions contained 95%, 95%, 93%, and 93% of Na+, K+, Mg2+, and Ca2+ ions, respectively [115]. 3.3.4. Membrane Distillation Crystallization The process employed a membrane distillation (MD) and crystallization process is called membrane distillation crystallization (MDC). Compared with the traditional crys- tallization process, the MDC displays rapid crystallization and well-controlled nucleation kinetics. The MDC was investigated to recover salt crystals from a single-salt LiCl solu- tion. The required concentration of precipitate the LiCl should be over 14 M. The MDC reached only 10 M. The required concentration level is possible by applying the vacuum membrane distillation [116].PDF Image | Electro-Driven Materials and Processes for Lithium
PDF Search Title:
Electro-Driven Materials and Processes for LithiumOriginal File Name Searched:
membranes-12-00343-v3.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |