PDF Publication Title:
Text from PDF Page: 019
Self-Standing Graphene Sheets Prepared with Chemical Vapor Deposition and Chemical Etching 9 reflectivity-energy curves obtained from each area: (a)-(b) the first-layer growth at 1125K, (d)-(f) the second-layer growth at 1050K and (g)-(h) the third-layer growth at 1050K. In Fig.2 (a)-(b), the growth rate of the first layer was faster than those of the second and third layers. The growth rate of the first layer was about 10μm/s. Fig. 7. Typical LEEM images of the graphene growth at different stages: (a)-(b) the first layer growth observed at 1125K, (d)-(f) the second layer at 1050K and (g)-(h) the third layer at 1050K. Image (c) is a typical μLEED pattern of a 1 x 1 atomic structure obtained from the single-layer graphene-covered surface. Image (i) is the electron reflectivity-energy curves obtained from each area. Fig. 7 (c) is a typical μLEED pattern of a 1 x 1 atomic structure obtained from the single- layer graphene-covered surface. Similar μLEED patterns of a 1 x 1 atomic structure were obtained from the bi- and tri-layer graphene-covered surface, showing the epitaxial sheets. After the growth of the first layer was completed, we decreased the temperature from 1125 K to 1050 K to grow the second and third layers. Differing from the smooth edge of the first-PDF Image | GRAPHENE SYNTHESIS CHARACTERIZATION PROPERTIES
PDF Search Title:
GRAPHENE SYNTHESIS CHARACTERIZATION PROPERTIESOriginal File Name Searched:
Graphene-Synthesis.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |