logo

Electrochemical Production Thermal Reduction Graphene Oxide

PDF Publication Title:

Electrochemical Production Thermal Reduction Graphene Oxide ( electrochemical-production-thermal-reduction-graphene-oxide )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 014

Materials 2022, 15, 4639 14 of 15 References 1. Commission, E.; for Research, D.G.; Innovation. European Green Deal: Research & Innovation Call; Publications Office: Luxembourg, 2021. [CrossRef] 2. Airinfra. The European Green Deal: What Does This Mean for the Aviation Industry? 2020. Available online: https://airinfra.eu/ blog/the-european-green-deal-what-does-this-mean-for-the-aviation-industry/ (accessed on 31 March 2022). 3. Reiss, T.; Hjelt, K.; Ferrari, A. Graphene is on track to deliver on its promises. Nat. Nanotechnol. 2019, 14, 907–910. [CrossRef] 4. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [CrossRef] 5. Zhang, Y.; Mori, T.; Niu, L.; Ye, J. Non-covalent doping of graphitic carbon nitride polymer with graphene: Controlled electronic structure and enhanced optoelectronic conversion. Energy Environ. Sci. 2011, 4, 4517–4521. [CrossRef] 6. Lin, J.S.; Kumar, S.R.; Ma, W.T.; Shih, C.M.; Teng, L.W.; Yang, C.C.; Lue, S.J. Gradiently distributed iron oxide@graphene oxide nanofillers in quaternized polyvinyl alcohol composite to enhance alkaline fuel cell power density. J. Membr. Sci. 2017, 543, 28–39. [CrossRef] 7. Foster, C.W.; Down, M.P.; Zhang, Y.; Ji, X.; Rowley-Neale, S.J.; Smith, G.C.; Kelly, P.J.; Banks, C.E. 3D Printed Graphene Based Energy Storage Devices. Sci. Rep. 2017, 7, 42233. [CrossRef] 8. Homaeigohar, S.; Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater. 2017, 9, e427–e427. [CrossRef] 9. Zeng, X.; Wang, G.; Liu, Y.; Zhang, X. Graphene-based antimicrobial nanomaterials: Rational design and applications for water disinfection and microbial control. Environ. Sci. Nano 2017, 4, 2248–2266. [CrossRef] 10. Bulut Kopuklu, B.; Tasdemir, A.; Alkan Gursel, S.; Yurum, A. High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode. Carbon 2021, 174, 158–172. [CrossRef] 11. Kung, C.Y.; Wang, T.L.; Lin, H.Y.; Yang, C.H. A high-performance covalently bonded self-doped polyaniline–graphene assembly film with superior stability for supercapacitors. J. Power Sources 2021, 490, 229538. [CrossRef] 12. Dong, Q.; Yin, X.; Liu, C. The effect of size and applied electric field on the spin switch in a two-electron graphene quantum dot and graphene qubit. Phys. E Low-Dimens. Syst. Nanostructures 2021, 127, 114555. [CrossRef] 13. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212. [CrossRef] [PubMed] 14. Liu, J.; Ji, H.; Lv, X.; Zeng, C.; Li, H.; Li, F.; Qu, B.; Cui, F.; Zhou, Q. Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Microchim. Acta 2022, 189, 54. [CrossRef] [PubMed] 15. Hodge, S.A.; Galhena, D.T.L.; Benson, J.; Li, S.; Smith, D.; Kemp, M. Trajectory of Graphene-Based Aerospace Applications; Versarien PLC: Cheltenham, UK, 2020. 16. Xing, R.; Li, Y.; Yu, H. Preparation of fluoro-functionalized graphene oxide via the Hunsdiecker reaction. Chem. Commun. 2016, 52, 390–393. [CrossRef] [PubMed] 17. Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. [CrossRef] 18. Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229. [CrossRef] 19. Tene, T.; Usca, G.T.; Guevara, M.; Molina, R.; Veltri, F.; Arias, M.; Caputi, L.S.; Gomez, C.V. Toward Large-Scale Production of Oxidized Graphene. Nanomaterials 2020, 10, 279. [CrossRef] 20. Ikram, R.; Jan, B.M.; Ahmad, W. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. J. Mater. Res. Technol. 2020, 9, 11587–11610. [CrossRef] 21. Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143. [CrossRef] 22. Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [CrossRef] 23. Yang, Y.; Wang, Z.; Zheng, S. Secondary Exfoliation of Electrolytic Graphene Oxide by Ultrasound Assisted Microwave Technique. Nanomaterials 2022, 12, 68. [CrossRef] 24. Liu, J.; Poh, C.K.; Zhan, D.; Lai, L.; Lim, S.H.; Wang, L.; Liu, X.; Gopal Sahoo, N.; Li, C.; Shen, Z.; et al. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy 2013, 2, 377–386. [CrossRef] 25. Pingale, A.D.; Owhal, A.; Katarkar, A.S.; Belgamwar, S.U.; Rathore, J.S. Facile synthesis of graphene by ultrasonic-assisted electrochemical exfoliation of graphite. Mater. Today Proc. 2021, 44, 467–472. [CrossRef] 26. Anurag, K.; Kumar, S. Synthesis of graphene through electrochemical exfoliation technique in aqueous medium. Mater. Today Proc. 2021, 44, 2695–2699. [CrossRef] 27. Loudiki, A.; Matrouf, M.; Azriouil, M.; Farahi, A.; Lahrich, S.; Bakasse, M.; Mhammedi, M.E. Preparation of graphene samples via electrochemical exfoliation of pencil electrode: Physico-electrochemical Characterization. Appl. Surf. Sci. Adv. 2022, 7, 100195. [CrossRef] 28. Sun, H.; Experimental, G.X.; Lian, W.T.; Kastiukas, G.; Zhang, J.; Zhang, X.; Liu, W.; Xing, F.; Ren, J. Electrochemical synthesis and property characterisation of graphene oxide using water as electrolyte. Chem. Phys. Lett. 2022, 786, 139206. [CrossRef] 29. Liu, F.; Wang, C.; Sui, X.; Riaz, M.A.; Xu, M.; Wei, L.; Chen, Y. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 2019, 1, 173–199. [CrossRef]

PDF Image | Electrochemical Production Thermal Reduction Graphene Oxide

electrochemical-production-thermal-reduction-graphene-oxide-014

PDF Search Title:

Electrochemical Production Thermal Reduction Graphene Oxide

Original File Name Searched:

materials-15-04639.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP