logo

Electro-Exfoliation of Graphite to Graphene

PDF Publication Title:

Electro-Exfoliation of Graphite to Graphene ( electro-exfoliation-graphite-graphene )

Next Page View | Return to Search List

Text from PDF Page: 001

nanomaterials Article Electro-Exfoliation of Graphite to Graphene in an Aqueous Solution of Inorganic Salt and the Stabilization of Its Sponge Structure with Poly(Furfuryl Alcohol) Anna Ilnicka 1, Malgorzata Skorupska 1, Piotr Kamedulski 1 and Jerzy P. Lukaszewicz 1,2,* 1 2 * Correspondence: jerzy_lukaszewicz@o2.pl; Tel.:+48-605-314-300 Received: 28 May 2019; Accepted: 29 June 2019; Published: 3 July 2019 Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland Abstract: We demonstrate an accessible and effective technique for exfoliating graphite foil and graphite powder into graphene in a water solution of inorganic salt. In our research, we report an electrochemical cathodic exfoliation in an aqueous solution of Na2SO4. After electro-exfoliation, the resulting graphene was premixed with furfuryl alcohol (FA) and an inorganic template (CaCO3 and Na2CO3). Once FA was polymerized to poly(furfuryl alcohol) (PFA), the mixture was carbonized. Carbon bridges originating in thermally-decomposed PFA joined exfoliated graphene flakes and stabilized the whole sponge-type structure after the nano-template was removed. Gases evolved at the graphite electrode (cathode) played an important role in the process of graphene-flake splitting and accelerated the change of graphite into graphene flakes. Starting graphite materials and graphene sponges were characterized using Raman spectroscopy, SEM, high-resolution transmission electron microscopy (HRTEM), elemental analysis, and low-temperature adsorption of nitrogen to determine their structure, morphology, and chemical composition. The discovered manufacturing protocol had a positive influence on the specific surface area and porosity of the sponges. The SEM and HRTEM studies confirmed a high separation degree of graphite and different agglomeration pathways. Raman spectra were analyzed with particular focus on the intensities of ID and IG peaks; the graphene-type nature of the sponges was confirmed. Keywords: graphene; electrochemical exfoliation; aqueous solution; poly(furfuryl alcohol); Raman spectroscopy; graphite electrode 1. Introduction Graphene is a two-dimensional layer of carbon atoms which form hexagonal rings based on sp2 hybridization [1,2]. A particularly promising graphene production technique is the creation of a colloidal suspension of graphene flakes or its derivatives [3]. Unlike other methods, e.g., chemical vapor deposition, epitaxial growth, and microchemical exfoliation, this approach is versatile in terms of chemical functionalization and affording the possibility of high-volume production. The latter is sometimes used to justify focus on obtaining graphene as a water dispersion [4]. Generally, exfoliation of graphene/graphene oxide is widely exploited and was a key step in the manufacturing of complex materials like bionanocomposite based on polylactic acid [5], graphene oxide and biodegradable polymer blends [6], graphene oxide (GO) and polyamide composites, and nanosilica modified graphene [7]. Recently, the electrochemical approach has been found to have the advantages of being single step, easy to operate, environmentally friendly, and able to operate at ambient conditions [8].    Nanomaterials 2019, 9, 971; doi:10.3390/nano9070971 www.mdpi.com/journal/nanomaterials

PDF Image | Electro-Exfoliation of Graphite to Graphene

electro-exfoliation-graphite-graphene-001

PDF Search Title:

Electro-Exfoliation of Graphite to Graphene

Original File Name Searched:

graphene-aqueous-salt-al.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP