Lithium-Sulfur Battery: Design, Characterization, and Physically-based Modeling

PDF Publication Title:

Lithium-Sulfur Battery: Design, Characterization, and Physically-based Modeling ( lithium-sulfur-battery-design-characterization-and-physicall )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 150

A.5 Parameter sets for the models Table A.5: Parameters used for the global model. Values are given for T = 303.15 K and p = 101325 Pa. 150 cathode separator anode Thickness: 40 μm Bulk phases Sulfur Carbon Electrolyte Volume fraction 0.5 0.2 0.3 ε 0 Control volumes: 8 Tortuosity τ0 1.0 1.0 Species Density / Initial concentration 2.07 · 103 kg · m−3 2.26 · 103 kg · m−3 1.20 · 103 kg · m−3/1.18 · 104 mol · m−3 1.00·103mol·m−3 7.67·102mol·m−3 2.36·101mol·m−3 2.36·101mol·m−3 2.36·101mol·m−3 2.36·101mol·m−3 2.36·101mol·m−3 3.54·101mol·m−3 Diffusion coefficient / m2 · s−1 – – – Lithium sulfide (Li2S) Interfaces sulfur surface 1·10−4 Specific area AV0 1·106 m2 ·m−3 1.0 Area-specific capacity Cdl 0F·m−2 S8(ds) Li2 S(s) Reaction(s) 2Li+ +1/8S8(ds) +2e− 􏰒 Li2S(s) 1.64 · 103 kg · m−3 Forward rate constant 1.0·1017 mol·m−2 ·s−1 1.0·103 mol·m−2 ·s−1 Molar Gibbs free energy −441.4 kJ · mol−1 15.0kJ·mol−1 Thickness: 100 μm Bulk phases Electrolyte Interfaces: none Thickness: 200 μm Bulk phases Lithium Electrolyte Interfaces Volume fraction ε0 1.0 Control volumes: 5 Tortuosity τ0 1.2 S8(ds) 􏰒 S8(s) Species anode surface Area-specific capacity Cdl 0F·m−2 Li(s) see cathode Reaction(s) Li(s) 􏰒 Li+ + e− Forward rate constant 1.0 · 10−3 Molar Gibbs free energy 0.0 J · mol−1 Volume fraction ε0 0.7 0.3 Specific area AV0 2·106 m2 ·m−3 Control volumes: 4 Tortuosity τ0 1.0 1.2 Species Density / Initial concentration 5.34 · 102 kg · m−3 1.2 C4H6O3 S8(s) C Li+ 1 · 10−10 1 · 10−10 1 · 10−10 1 · 10−10 1 · 10−10 1 · 10−10 1 · 10−10 1 · 10−10 – TFSI− S2− S2− 2 S2− 4 S2− 6 S2− 8 see cathode

PDF Image | Lithium-Sulfur Battery: Design, Characterization, and Physically-based Modeling

PDF Search Title:

Lithium-Sulfur Battery: Design, Characterization, and Physically-based Modeling

Original File Name Searched:

Dissertation_David_N._Fronczek_The_Lithium_Sulfur_Battery.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)