PDF Publication Title:
Text from PDF Page: 461
426 Handbook on the Physics and Chemistry of Rare Earths Xu, W., Zhao, H., Li, Y., Zheng, L., Zhang, Z., Cao, W., 2013. Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4. Sens. Actuators B: Chem. 188, 1096–1100. Yang, J.M., Yang, H., Lin, L.W., 2011. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5, 5067–5071. Yang, T.S., Sun, Y., Liu, Q., Feng, W., Yang, P.Y., Li, F.Y., 2012. Cubic sub-20 nm NaLuF4- based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 33, 3733–3742. Yarimaga, O., Lee, S., Ham, D.Y., Choi, J.M., Kwon, S.G., Im, M., Kim, S., Kim, J.M., Choi, Y.K., 2011. Thermofluorescent conjugated polymer sensors for nano- and microscale temperature monitoring. Macromol. Chem. Phys. 212, 1211–1220. Ye, F.M., Wu, C.F., Jin, Y.H., Chan, Y.H., Zhang, X.J., Chiu, D.T., 2011. Ratiometric tempera- ture sensing with semiconducting polymer dots. J. Am. Chem. Soc. 133, 8146–8149. Yoder, R.D., 1979. Liquid-crystal thermometry. Anesth. Analg. 58, 351. Yu, J.B., Sun, L.N., Peng, H.S., Stich, M.I.J., 2010. Luminescent terbium and europium probes for lifetime based sensing of temperature between 0 and 70°C. J. Mater. Chem. 20, 6975–6981. Yuasa, J., Mukai, R., Hasegawa, Y., Kawai, T., 2014. Ratiometric luminescence thermometry based on crystal-field alternation at the extremely narrow 5D0 ! 7F2 transition band of euro- pium (III). Chem. Commun. 50, 7937–7940. Yue, Y., Wang, X., 2012. Nanoscale thermal probing. Nano Rev. 3, 11586. Zalewski, E.F., Duda, C.R., 1983. Silicon photodiode device with 100% external quantum effi- ciency. Appl. Optics 22, 2867–2873. Zhang, Y., Liu, X., 2013. Nanocrystals: shining a light on upconversion. Nat. Nanotechnol. 8, 702–703. Zhao, J., Jin, D., Schartner, E.P., Lu, Y., Liu, Y., Zvyagin, A.V., Zhang, L., Dawes, J.M., Xi, P., Piper, J.A., Goldys, E.M., Monro, T.M., 2013. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729–734. Zheng, K., Liu, Z., Lv, C., Qin, W., 2013. Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+–Tm3+–Gd3+ codoped NaLuF4 microcrystals. J. Mater. Chem. C 1, 5502–5507. Zheng, S.H., Chen, W.B., Tan, D.Z., Zhou, J.J., Guo, Q.B., Jiang, W., Xu, C., Liu, X.F., Qiu, J.R., 2014. Lanthanide-doped NaGdF4 core–shell nanoparticles for non-contact self-referencing temperature sensors. Nanoscale 6, 5675–5679. Zheng, K.Z., Song, W.Y., He, G.H., Yuan, Z., Qin, W.P., 2015. Five-photon UV upconversion emissions of Er3+ for temperature sensing. Opt. Express 23, 7653–7658. Zhou, Y., Yan, B., 2015. Lanthanides post-functionalized nanocrystalline metal-organic frame- works for tunable white-light emission and orthogonal multi-readout thermometry. Nanoscale 7, 4063–4069. Zhou, S.S., Jiang, G.C., Li, X.Y., Jiang, S., Wei, X.T., Chen, Y.H., Yin, M., Duan, C.K., 2014a. Strategy for thermometry via Tm3+-doped NaYF4 core–shell nanoparticles. Opt. Lett. 39, 6687–6690. Zhou, S.S., Jiang, G.C., Wei, X.T., Duan, C.K., Chen, Y.H., Yin, M., 2014b. Pr3+-doped b-NaYF4 for temperature sensing with fluorescence intensity ratio technique. J. Nanosci. Nanotechnol. 14, 3739–3742. Zhou, S.S., Jiang, S., Wei, X.T., Chen, Y.H., Duan, C.K., Yin, M., 2014c. Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4. J. Alloys Compd. 588, 654–657.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)