
PDF Publication Title:
Text from PDF Page: 460
Lanthanides in Luminescent Thermometry Chapter 281 425 Wang, T., Li, P., Li, H., 2014. Color-tunable luminescence of organoclay-based hybrid materials showing potential applications in white LED and thermosensors. ACS Appl. Mater. Interfaces 6, 12915–12921. Wang, J.H., Huang, H., Zhang, D.Q., Chen, M., Zhang, Y.F., Yu, X.F., Zhou, L., Wang, Q.Q., 2015a. Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Res. 8, 2548–2561. Wang, X., Meier, R.J., Schmittlein, C., Schreml, S., Sch€aferling, M., Wolfbeis, O.S., 2015b. A water-sprayable, thermogelating and biocompatible polymer host for use in fluorescent chemical sensing and imaging of oxygen, pH values and temperature. Sens. Actuators B: Chem. 221, 37–44. Wang, Z.P., Ananias, D., Carne-Sanchez, A., Brites, C.D.S., Imaz, I., Maspoch, D., Rocha, J., Carlos, L.D., 2015c. Lanthanide-organic framework nanothermometers prepared by spray- drying. Adv. Funct. Mater. 25, 2824–2830. Watanabe, M.S., Kakuta, N., Mabuchi, K., Yamada, Y., 2005. Micro-thermocouple probe for measurement of cellular thermal responses. In: Proc. 27th Ann. Intl. Conf. IEEE EMBS 1–7, pp. 4858–4861. Wawrzynczyk, D., Bednarkiewicz, A., Nyk, M., Strek, W., Samoc, M., 2012. Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors. Nanoscale 4, 6959–6961. Weber, M.J., 1967. Probabilities for radiative and nonradiative decay of Er3+ in LaF3. Phys. Rev. 157, 262–272. Wei, Y., Sa, R., Li, Q., Wu, K., 2015. Highly stable and sensitive LnMOF ratiometric thermo- meters constructed with mixed ligands. Dalton Trans. 44, 3067–3074. Weissleder, R., 2001. A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317. Wen, H., Zhu, H., Chen, X., Hung, T.F., Wang, B., Zhu, G., Yu, S.F., Wang, F., 2013. Upconvert- ing near-infrared light through energy management in core–shell–shell nanoparticles. Angew. Chem. Int. Ed. 52, 13419–13423. Wickberg, A., Mueller, J.B., Mange, Y.J., Fischer, J., Nann, T., Wegener, M., 2015. Three- dimensional micro-printing of temperature sensors based on up-conversion luminescence. Appl. Phys. Lett. 106, 133103. Windhorn, T.H., Cain, C.A., 1979. Optically-active binary-liquid crystal thermometry. IEEE Trans. Biomed. Eng. 26, 148–152. Wolfbeis, O.S., 2008. Sensor paints. Adv. Mater. 20, 3759–3763. Wu, X.W., Hull, R., 2012. A novel nano-scale non-contact temperature measurement technique for crystalline materials. Nanotechnology 23, 465707. Wu, X., Chen, G.Y., Shen, J., Li, Z.J., Zhang, Y.W., Han, G., 2015. Upconversion nanoparticles: a versatile solution to multiscale biological imaging. Bioconjug. Chem. 26, 166–175. Xie, X.J., Gao, N.Y., Deng, R.R., Sun, Q., Xu, Q.H., Liu, X.G., 2013. Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles. J. Am. Chem. Soc. 135, 12608–12611. Ximendes, E.C., Rocha, U., Jacinto, C., Kumar, K.U., Bravo, D., Lopez, F.J., Rodriguez, E.M., Garcia-Sole, J., Jaque, D., 2016. Self-monitored photothermal nanoparticles based on core– shell engineering. Nanoscale 8, 3057–3066. Xing, L.L., Yang, W.Q., Ma, D.C., Wang, R., 2015. Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ codoped LiNbO3 crystal. Sens. Actuators B: Chem. 221, 458–462. Xu, W., Gao, X.Y., Zheng, L.J., Zhang, Z.G., Cao, W.W., 2012. An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic. Sens. Actuators B: Chem. 173, 250–253.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |