PDF Publication Title:
Text from PDF Page: 452
Lanthanides in Luminescent Thermometry Chapter 281 417 Jaque, D., Martinez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J.L., Martin Rodriguez, E., Sole, J.G., 2014b. Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530. Jarenwattananon, N.N., Gloggler, S., Otto, T., Melkonian, A., Morris, W., Burt, S.R., Yaghi, O.M., Bouchard, L.S., 2013. Thermal maps of gases in heterogeneous reactions. Nature 502, 537–540. Jennings, G.W. 1941. Temperature indicator. US patent application US2261473 A. 4 Nov 1941. Jung, W., Kim, Y.W., Yim, D., Yoo, J.Y., 2011. Microscale surface thermometry using SU8/ rhodamine-B thin layer. Sens. Actuators A: Phys. 171, 228–232. Ke, G.L., Wang, C.M., Ge, Y., Zheng, N.F., Zhu, Z., Yang, C.J., 2012. L-DNA molecular beacon: a safe, stable, and accurate intracellular nano-thermometer for temperature sensing in living cells. J. Am. Chem. Soc. 134, 18908–18911. Kewell, A.K., Reed, G.T., Namavar, F., 1998. Integrated temperature sensor in Er-doped silicon. Sens. Actuators A: Phys. 65, 160–164. Khalid, A.H., Kontis, K., 2009. 2D surface thermal imaging using rise-time analysis from laser- induced luminescence phosphor thermometry. Meas. Sci. Technol. 20, 025305. Khalil, G.E., Lau, K., Phelan, G.D., Carlson, B., Gouterman, M., Callis, J.B., Dalton, L.R., 2004. Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration. Rev. Sci. Instrum. 75, 192–206. Kim, S.H., Noh, J., Jeon, M.K., Kim, K.W., Lee, L.P., Woo, S.I., 2006. Micro-Raman thermome- try for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip. J. Micromech. Microeng. 16, 526–530. Kim, K., Jeong, W.H., Lee, W.C., Reddy, P., 2012. Ultra-high vacuum scanning thermal micros- copy for nanometer resolution quantitative thermometry. ACS Nano 6, 4248–4257. Kim, D.U., Ryu, S.Y., Kim, J.K., Chang, K.S., 2014. Quantitative thermal characterization of microelectronic devices by using CCD-based thermoreflectance microscopy. In: SPIE MOEMS-MEMS. International Society for Optics and Photonics (89750Q-89750Q-7). Kliesch, M., Gogolin, C., Kastoryano, M., Riera, A., Eisert, J., 2014. Locality of temperature. Phys. Rev. X 4, 031019. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P.L., Urano, Y., 2010. New strategies for fluores- cent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640. Kolodner, P., Tyson, J.A., 1983. Remote thermal imaging with 0.7-mm spatial resolution using temperature-dependent fluorescent thin films. Appl. Phys. Lett. 42, 117–119. Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., Lukin, M.D., 2013. Nanometre-scale thermometry in a living cell. Nature 500, 54–58. Kumar, R., Nyk, M., Ohulchanskyy, T.Y., Flask, C.A., Prasad, P.N., 2009. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 19, 853–859. Kusama, H., Sovers, O.J., Yoshioka, T., 1976. Line shift method for phosphor temperature- measurements. Jpn. J. Appl. Phys. 15, 2349–2358. Lees, D.E., 1982. Liquid-crystal thermometry. Anesth. Analg. 61, 803–804. Leo ́n-Luis, S.F., Rodr ́ıguez-Mendoza, U.R., Haro-Gonzalez, P., Martin, I.R., Lavin, V., 2012. Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sens. Actuators B: Chem. 174, 176–186. Li, S., Zhang, K., Yang, J.M., Lin, L.W., Yang, H., 2007. Single quantum dots as local tempera- ture markers. Nano Lett. 7, 3102–3105. Li, D.D., Shao, Q.Y., Dong, Y., Jiang, J.Q., 2013. Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates. Mater. Lett. 110, 233–236.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)