PDF Publication Title:
Text from PDF Page: 447
412 Handbook on the Physics and Chemistry of Rare Earths Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S.H., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Shi, L., 2014. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305. Caillat, L., Hajj, B., Shynkar, V., Michely, L., Chauvat, D., Zyss, J., Pelle, F., 2013. Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy. Appl. Phys. Lett. 102, 143114. Carlos, L.D., Palacio, F., 2016. Thermometry at the Nanoscale: Techniques and Selected Applica- tions. Royal Society of Chemistry, Oxfordshire. Carlos, L.D., Messaddeq, Y., Brito, H.F., Ferreira, R.A.S., De Zea Bermudez, V., Ribeiro, S.J.L., 2000. Full-color phosphors from europium(III)-based organosilicates. Adv. Mater. 12, 594–598. Carlos, L.D., de Zea Bermudez, V., Amaral, V.S., Nunes, S.C., Silva, N.J.O., Ferreira, R.A.S., Rocha, J., Santilli, C.V., Ostrovskii, D., 2007. Nanoscopic photoluminescence memory as a fingerprint of complexity in self-assembled alkyl/siloxane hybrids. Adv. Mater. 19, 341–348. Carlos, L.D., Ferreira, R.A.S., de Zea Bermudez, V., Ribeiro, S.J.L., 2009. Lanthanide-containing light-emitting organic–inorganic hybrids: a bet on the future. Adv. Mater. 21, 509–534. Carlson, M.T., Khan, A., Richardson, H.H., 2011. Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett. 11, 1061–1069. Carnall, W.T., Crosswhite, H., Crosswhite, H.M., 1977. Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3Argonne. Nat. Lab. Rep. IL, USA 78-XX-95. Carrasco, E., del Rosal, B., Sanz-Rodr ́ıguez, F., de la Fuente, A ́ .J., Gonzalez, P.H., Rocha, U., Kumar, K.U., Jacinto, C., Sole, J.G., Jaque, D., 2015. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 25, 615–626. Cero ́n, E.N., Ortgies, D.H., del Rosal, B., Ren, F., Benayas, A., Vetrone, F., Ma, D., Sanz- Rodr ́ıguez, F., Sole, J.G., Jaque, D., Rodr ́ıguez, E.M., 2015. Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv. Mater. 27, 4781–4787. Chapman, C.F., Liu, Y., Sonek, G.J., Tromberg, B.J., 1995. The use of exogenous fluorescent- probes for temperature-measurements in single living cells. Photochem. Photobiol. 62, 416–425. Chauhan, V.M., Hopper, R.H., Ali, S.Z., King, E.M., Udrea, F., Oxley, C.H., Aylott, J.W., 2014. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate. Sens. Actuators B: Chem. 192, 126–133. Chen, G.Y., Yang, C.H., Prasad, P.N., 2013. Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparti- cles. Acc. Chem. Res. 46, 1474–1486. Chen, G.Y., Qju, H.L., Prasad, P.N., Chen, X.Y., 2014. Upconversion nanoparticles: design, nano- chemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214. Chen, C.W., Lee, P.H., Chan, Y.C., Hsiao, M., Chen, C.H., Wu, P.C., Wu, P.R., Tsai, D.P., Tu, D., Chen, X.Y., Liu, R.S., 2015a. Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy. J. Mater. Chem. B 3, 8293–8302. Chen, G.Y., Agren, H., Ohulchanskyy, T.Y., Prasad, P.N., 2015b. Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chem. Soc. Rev. 44, 1680–1713.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)