
PDF Publication Title:
Text from PDF Page: 446
Lanthanides in Luminescent Thermometry Chapter 281 411 Binnemans, K., 2009. Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283–4374. Bland, J.M., Altman, D.G., 1986. Statistical methods for assessing agreement between two meth- ods of clinical measurement. Lancet 1, 307–310. Borisov, S.M., Wolfbeis, O.S., 2006. Temperature-sensitive europium(III) probes and their use for simultaneous luminescent sensing of temperature and oxygen. Anal. Chem. 78, 5094–5101. Boruc, Z., Kaczkan, M., Fetlinski, B., Turczynski, S., Malinowski, M., 2012. Blue emissions in Dy3+ doped Y4Al2O9 crystals for temperature sensing. Opt. Lett. 37, 5214–5216. Brites, C.D.S., Lima, P.P., Silva, N.J.O., Milla ́n, A., Amaral, V.S., Palacio, F., Carlos, L.D., 2010. A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv. Mater. 22, 4499–4504. Brites, C.D.S., Lima, P.P., Silva, N.J.O., Milla ́n, A., Amaral, V.S., Palacio, F., Carlos, L.D., 2011. Lanthanide-based luminescent molecular thermometers. New J. Chem. 35, 1177–1183. Brites, C.D.S., Lima, P.P., Silva, N.J.O., Milla ́n, A., Amaral, V.S., Palacio, F., Carlos, L.D., 2012. Thermometry at the nanoscale. Nanoscale 4, 4799–4829. Brites, C.D.S., Lima, P.P., Silva, N.J.O., Milla ́n, A., Amaral, V.S., Palacio, F., Carlos, L.D., 2013a. Organic–inorganic Eu3+/Tb3+ codoped hybrid films for temperature mapping in integrated circuits. Front. Chem. 1, 9. Brites, C.D.S., Lima, P.P., Silva, N.J.O., Milla ́n, A., Amaral, V.S., Palacio, F., Carlos, L.D., 2013b. Ratiometric highly sensitive luminescent nanothermometers working in the room tem- perature range. Applications to heat propagation in nanofluids. Nanoscale 5, 7572–7580. Brites, C.D.S., Lima, P.P., Silva, N.J.O., Milla ́n, A., Amaral, V.S., Palacio, F., Carlos, L.D., 2013c. Thermometry at the nanoscale using lanthanide-containing organic–inorganic hybrid materials. J. Lumin. 133, 230–232. Brites, C.D.S., Lima, P.P., Carlos, L.D., 2016. Tuning the sensitivity of Ln3+-based luminescent molecular thermometers through ligand design. J. Lumin. 169 (B), 497–502. B€unzli, J.-C.G., 2006. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 39, 53–61. B€unzli, J.-C.G., 2010. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755. B€unzli, J.-C.G., 2015. On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 293, 19–47. B€unzli, J.-C.G., Eliseeva, S.V., 2013. Intriguing aspects of lanthanide luminescence. Chem. Sci. 4, 1939–1949. B€unzli, J.-C.G., Piguet, C., 2005. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077. Burbano, D.C.R., Naccache, R., Capobianco, J.A., 2015. Near-IR triggered photon upconversion: imaging, detection, and therapy. In: B€unzli, J.-C.G., Pecharsky, V.K. (Eds.), Handbook of the Physics and Chemistry of Rare Earths, vol. 47. Elsevier, pp. 273–334 (Chapter 273). Burzo, M.G., Komarov, P.L., Raad, P.E., 2005. Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method. IEEE Trans. Compon. Pack. Technol. 28, 637–643. Cadiau, A., Brites, C.D.S., Costa, P.M.F.J., Ferreira, R.A.S., Rocha, J., Carlos, L.D., 2013. Ratio- metric nanothermometer based on an emissive Ln3+-organic framework. ACS Nano 7, 7213–7218. Cahill, D.G., 2004. Analysis of heat flow in layered structures for time–domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |