PDF Publication Title:
Text from PDF Page: 445
410 Handbook on the Physics and Chemistry of Rare Earths Alencar, M.A.R.C., Maciel, G.S., de Arau ́jo, C.B., Patra, A., 2004. Er3+-doped BaTiO3 nanocrys- tals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl. Phys. Lett. 84, 4753–4755. Alicki, R., Leitner, D.M., 2015. Size-dependent accuracy of nanoscale thermometers. J. Phys. Chem. B 119, 9000–9005. Allison, S.W., Gillies, G.T., 1997. Remote thermometry with thermographic phosphors: instru- mentation and applications. Rev. Sci. Instrum. 68, 2615–2650. Ananias, D., Paz, F.A.A., Yufit, D.S., Carlos, L.D., Rocha, J., 2015. Photoluminescent thermom- eter based on a phase-transition lanthanide silicate with unusual structural disorder. J. Am. Chem. Soc. 137, 3051–3058. Arai, S., Lee, S.C., Zhai, D., Suzuki, M., Chang, Y.T., 2014. A molecular fluorescent probe for targeted visualization of temperature at the endoplasmic reticulum. Sci. Rep. 4, 6701. Arai, S., Suzuki, M., Park, S.J., Yoo, J.S., Wang, L., Kang, N.Y., Ha, H.H., Chang, Y.T., 2015. Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. Chem. Commun. 51, 8044–8047. Asheghi, M., Yang, Y., 2005. Micro- and nano-scale diagnostic techniques for thermometry and thermal imaging of microelectronic and data storage devices. In: Breuer, K.S. (Ed.), Micro- scale Diagnostic Techniques. Springer, Berlin, pp. 155–196 (Chapter 4). Babu, S.S., Hollamby, M.J., Aimi, J., Ozawa, H., Saeki, A., Seki, S., Kobayashi, K., Hagiwara, K., Yoshizawa, M., Mohwald, H., Nakanishi, T., 2013. Nonvolatile liquid anthracenes for facile full-colour luminescence tuning at single blue-light excitation. Nat. Commun. 4, 1969. Bai, X., Li, D., Liu, Q., Dong, B., Xu, S., Song, H.W., 2012. Concentration-controlled emission in LaF3:Yb3+/Tm3+ nanocrystals: switching from UV to NIR regions. J. Mater. Chem. 22, 24698–24704. Baker, S.N., McCleskey, T.M., Baker, G.A., 2005. An ionic liquid-based optical thermometer. Ionic liquids IIIB: Fundamentals, Progress, Challenges and Opportunities, vol. 902. American Chemical Society, Washington, DC171–181 (Chapter 14). Balabhadra, S., Debasu, M.L., Brites, C.D., Nunes, L.A., Malta, O.L., Rocha, J., Bettinelli, M., Carlos, L.D., 2015. Boosting the sensitivity of Nd3+-based luminescent nanothermometers. Nanoscale 7, 17261–17267. Barilero, T., Le Saux, T., Gosse, C., Jullien, L., 2009. Fluorescent thermometers for dual- emission-wavelength measurements: molecular engineering and application to thermal imag- ing in a microsystem. Anal. Chem. 81, 7988–8000. Bartlett, J.W., Frost, C., 2008. Reliability, repeatability and reproducibility: analysis of measure- ment errors in continuous variables. Ultrasound Obstet. Gynecol. 31, 466–475. Beechem, T., Graham, S., Kearney, S.P., Phinney, L.M., Serrano, J.R., 2007. Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy. Rev. Sci. Instrum. 78, 061301. Benayas, A., del Rosal, B., Perez-Delgado, A., Santacruz-Gomez, K., Jaque, D., Hirata, G.A., Vetrone, F., 2015. Nd:YAG near-infrared luminescent nanothermometers. Adv. Opt. Mater. 3, 687–694. Berthou, H., J€orgensen, C.K., 1990. Optical-fiber temperature sensor based on upconversion- excited fluorescence. Opt. Lett. 15, 1100–1102. Bettinelli, M., Carlos, L.D., Liu, X., 2015. Lanthanide-doped upconversion nanoparticles. Phys. Today 68, 38–44. Binnemans, K., 2005. Rare earth beta-diketonates. In: Gschneidner Jr., K.A., B€unzli, J.-C.G., Pecharsky, V.K. (Eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 35. Elsevier Science, B. V., Amsterdam, pp. 107–272 (Chapter 225).PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)