logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 368

Quantum Critical Matter and Phase Transitions Chapter 280 333 Han, Z., Allain, A., Arjmandi-Tash, H., Tikhonov, K., Feigel’Man, M., Sacepe, B., Bouchiat, V., 2014. Collapse of superconductivity in a hybrid tin-graphene Josephson junction array. Nat. Phys. 10 (5), 380–386. Harrison, N., Jaime, M., Mydosh, J.A., 2003. Reentrant hidden order at a metamagnetic quantum critical end point. Phys. Rev. Lett. 90 (9), 096402. Hartmann, S., Oeschler, N., Krellner, C., Geibel, C., Paschen, S., Steglich, F., 2010. Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2. Phys. Rev. Lett. 104 (9), 096401. Hassinger, E., Knebel, G., Matsuda, T.D., Aoki, D., Taufour, V., Flouquet, J., 2010. Similarity of the Fermi surface in the hidden order state and in the antiferromagnetic state of URu2Si2. Phys. Rev. Lett. 105 (21), 216409. Hegger, H., Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., 2000. Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84 (21), 4986. Herbut, I., 2010. A Modern Approach to Critical Phenomena. Cambridge University Press, Cambridge, UK. Hertz, J.A., 1976. Quantum critical phenomena. Phys. Rev. B 14 (3), 1165–1184. Heuser, K., Scheidt, E.W., Schreiner, T., Stewart, G.R., 1998. Inducement of non-Fermi-liquid behavior with a magnetic field. Phys. Rev. B 57 (8), R4198. Hewson, A.C., 1993. The Kondo Problem to Heavy Fermions. Cambridge University Press, Cambridge, UK. Hlubina, R., Rice, T.M., 1995. Resistivity as a function of temperature for models with hot-spots on the Fermi-surface. Phys. Rev. B 51 (14), 9253–9260. Jiao, L., Chen, Y., Kohama, Y., Graf, D., Bauer, E.D., Singleton, J., Zhu, J.X., Weng, Z., Pang, G., Shang, T., et al., 2015. Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5. Proc. Natl. Acad. Sci. 112 (3), 673–678. J€onsson, P.E., Mathieu, R., Wernsdorfer, W., Tkachuk, A.M., Barbara, B., 2007. Absence of conventional spin-glass transition in the Ising dipolar system LiHoxY1xF4. Phys. Rev. Lett. 98 (25), 256403. Kalvius, G.M., Hartmann, O., W€appling, R., G€unther, A., Krimmel, A., Loidl, A., MacLaughlin, D.E., Bernal, O.O., Nieuwenhuys, G.J., Aronson, M.C., et al., 2014. Magnetism of Pd1xNix alloys near the critical concentration for ferromagnetism. Phys. Rev. B 89 (6), 064418. Kambe, S., Sakai, H., Tokunaga, Y., Lapertot, G., Matsuda, T.D., Knebel, G., Flouquet, J., Walstedt, R.E., 2014. Degenerate Fermi and non-Fermi liquids near a quantum critical phase transition. Nat. Phys. 10 (11), 840–844. Kasuya, T., 1956. A theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45. Keimer, B., Kivelson, S.A., Norman, M.R., Uchida, S., Zaanen, J., 2015. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518 (7538), 179–186. Knafo, W., 2015. Private communications. Knebel, G., Aoki, D., Braithwaite, D., Salce, B., Flouquet, J., 2006. Coexistence of antiferromag- netism and superconductivity in CeRhIn5 under high pressure and magnetic field. Phys. Rev. B 74 (2), 020501. Kondo, J., 1964. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32 (1), 37–49. Kopec ́, T.K., 1997. Nonlinear response in quantum spin glasses. Phys. Rev. Lett. 79 (21), 4266. Kornblit, A., Ahlers, G., 1975. Heat capacity of EuO near the Curie temperature. Phys. Rev. B 11 (7), 2678–2688.

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-368

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP