PDF Publication Title:
Text from PDF Page: 317
REE Mineralogy and Resources Chapter 279 281 B€unzli, J.-C.G., Pecharsky, V.K. (Eds.). Vol. 46, Handbook on the Physics and Chemistry of Rare Earths, 268, 79–127. Naslund, H.R., Henr ́ıquez, F., Nystr€om, J.O., Vivallo, W., Dobbs, F.M., 2002. Magmatic iron ores and associated mineralization: examples from the Chilean High Andes and Coastal cordillera. In: Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, vol. 2. PGC Publishing, Adelaide, pp. 207–226. Nelson, D.R., Chivas, A.R., Chappell, B.W., McCulloch, M.T., 1988. Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geo- chim. Cosmochim. Acta 52, 1–17. Ni, Y., Hughes, J.M., Mariano, A.N., 1995. Crystal chemistry of the monazite and xenotime struc- tures. Am. Mineral. 80, 21–26. Nickel, E.H., 1992. Solid solutions in mineral nomenclature. Can. Mineral. 30, 231–234. Nickel, E.H., Grice, J.D., 1998. The IMA commission on new minerals and mineral names: pro- cedures and guidelines on mineral nomenclature, 1998. Can. Mineral. 36, 913–926. Nold, J.L., Davidson, P., Dudley, M.A., 2013. The pilot knob magnetite deposit in the Proterozoic St. Francois Mountains Terrane, southeast Missouri, USA: a magmatic and hydrothermal replacement iron deposit. Ore Geol. Rev. 53, 446–469. Notholt, A.J.G., 1979. The economic geology and development of igneous phosphate deposits in Europe and the USSR. Econ. Geol. 74, 339–350. Oberli, F., Meier, M., Berger, A., Rosenberg, C.L., Giere, R., 2004. U–Th–Pb and 230Th/238U dis- equilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochim. Cosmochim. Acta 68, 2543–2560. Oelkers, E.H., Poitrasson, F., 2002. An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230°C and pH from 1.5 to 10. Chem. Geol. 191, 73–87. Oelkers, E.H., Valsami-Jones, E., Roncal-Herrero, T., 2008. Phosphate mineral reactivity: from global cycles to sustainable development. Mineral. Mag. 72, 337–340. Ogata, T., Narita, H., Tanaka, M., 2014. Immobilization of diglycol amic acid on silica gel for selective recovery of rare earth elements. Chem. Lett. 43, 1414–1416. Ogata, T., Narita, H., Tanaka, M., Hoshino, M., Kon, Y., Watanabe, Y., 2016. Selective recovery of heavy rare earth elements from apatite with an adsorbent bearing immobilized tridentate amido ligands. Sep. Purif. Technol. 159, 157–160. Ohta, A., Kawabe, I., 2001. REE(III) adsorption onto Mn dioxide (d-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by d-MnO2. Geochim. Cosmochim. Acta 65, 695–703. Oliva, P., Dupre, B., Martin, F., Viers, J., 2004. The role of trace minerals in chemical weathering in a high-elevation granitic watershed (Estibere, France): chemical and mineralogical evi- dence. Geochim. Cosmochim. Acta 68, 2223–2243. Ondrejka, M., Uher, P., Prsˇek, J., Ozd ́ın, D., 2007. Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slo- vakia: composition and substitutions in the (REE, Y)XO4 system (X1⁄4P, As, Si, Nb, S). Lithos 95, 116–129. Orris, G.J., Grauch, R.I., 2002. Rare earth element mines, deposits, and occurrences. U.S. Geological Survey Open File Report 02-189, 78p. Pan, H., 2011. Characteristics and ore genesis of weathering-crust ion-adsorption type REE depos- its in the Yunkai Area, Guangxi Region. Land Resour. South. China 9, 37–40 (in Chinese). Pan, Y., Fleet, M.E., 2002. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn, M.J., Rakovan, J., Hughes, J.M. (Eds.), Phosphates—Geochemical,PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |