PDF Publication Title:
Text from PDF Page: 312
276 Handbook on the Physics and Chemistry of Rare Earths Jordens, A., Cheng, Y.P., Waters, K.E., 2013. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 41, 97–114. Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., Delvaux, B., 2005. Halloysite clay minerals—a review. Clay Miner. 40, 383–426. Kanazawa, Y., Kamitani, M., 2006. Rare earth minerals and resources in the world. J. Alloys Compd. 408–412, 1339–1343. Karadag ̆, M.M., K€upeli, S ̧., Ary ́k, F., Ayhan, A., Zedef, V., D€oyen, A., 2009. Rare earth element (REE) geochemistry and genetic implications of the Mortas ̧ bauxite deposit (Seydis ̧ehir/ Konya–Southern Turkey). Chem. Erde 69, 143–159. Kartashov, P.M., Ferraris, G., Ivaldi, G., Sokolova, E., McCammon, C.A., 2002. Ferriallanite- (Ce), CaCeFe3+AlFe2+(SiO4)(Si2O7)O(OH), a new member of the epidote group: description, X-ray and M€ossbauer study. Can. Mineral. 2002 (40), 1641–1648. Kato, A., 2008. Nihonsankoubutsubunruibetsuichiran. Mumeikai, Tokyo, p. 131. Kato, Y., Fujinaga, K., Nozaki, T., Osawa, H., Nakamura, K., Ono, R., 2005. Rare earth, major and trace elements in the Kunimiyama ferromanganese deposit in the northern Chichibu Belt, central Shikoku, Japan. Resour. Geol. 55, 291–299. Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R., Nakashima, T., Iwamori, H., 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 4, 535–539. Kelts, A.B., Ren, M., Anthony, E.Y., 2008. Monazite occurrence, chemistry and chronology in the granitoid rocks of the Lachlan fold Belt, Australia: an electron microprobe study. Am. Min- eral. 93, 373–383. Kempe, U., Gruner, T., Renno, A.D., Wolf, D., Rene, M., 2004. Discussion on Wang et al. (2000) Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites, Eastern China. Min- eral. Mag. 68, 669–675. Kerr, A., Rafuse, H., 2012. Rare-earth element (REE) geochemistry of the Strange Lake deposits: implications for resource estimation and metallogenic models. In: Curret Research (2012) Newfoundland and Labrador Department of Natural Resources, Geological Survey, Report 12–1, pp. 39–60. Khomyakov, A.P., Sørensen, H., 2001. Zoning in steen-strupine-(Ce) from the Il ́ımaussaq alkaline complex, South Greenland: a review and discussion. Geol. Greenland Surv. Bull. 190, 109–118. Khudolozhkin, V.O., Urusov, V.S., Tobelko, K.I., Vernadskiy, V.I., 1973. Dependence of struc- tural ordering of rare earth atoms in the isomorphous series apatite-britholite (abukumalite) on composition and temperature. Geochem. Int. 10, 1171–1177. Klinkhammer, G., Elderfield, H., Hudson, A., 1983. Rare earth elements in seawater near hydro- thermal vents. Nature 305, 185–188. Klinkhammer, G.P., Elderfied, H., Edomond, J.M., Mitra, A., 1994. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-Ocean ridges. Geochim. Cosmo- chim. Acta 58, 5105–5113. Kogarko, L.N., Khapaev, V.V., 1987. The modelling of the formation of apatite deposits of the Khibina massif (Kola Peninsula). In: Parsons, I. (Ed.), Origin of Igneous Layering. Reidel Publishing Company, Dordrecht, pp. 589–611. Kogarko, L.N., Williams, C.T., Woolley, A.R., 2002. Chemical evolution and petrogenetic impli- cations of loparite in the layered, agpaitic Lovozero complex, Kola Peninsula, Russia. Min- eral. Petrol. 74, 1–24. K€ohler, S.J., Harouiya, N., Cha ̈ırat, C., Oelkers, E.H., 2005. Experimental studies of REE frac- tionation during water–mineral interactions: REE release rates during apatite dissolution from pH 2.8 to 9.2. Chem. Geol. 222, 168–182.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |