PDF Publication Title:
Text from PDF Page: 309
REE Mineralogy and Resources Chapter 279 273 Harrison, W.J., 1981. Partitioning of REE between minerals and coexisting melts during partial melting of a garnet lherzolite. Am. Mineral. 66, 242–259. Hazen, R.M., Finger, L.W., 1979. Crystal structure and compressibility of zircon at high pressure. Am. Mineral. 64, 196–201. Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., Yang, H., 2008. Mineral evolution. Am. Mineral. 93, 1693–1720. Hazen, R.M., Ewing, R.C., Sverjensky, D.A., 2009. Evolution of uranium and thorium minerals. Am. Mineral. 94, 1293–1311. Hazen, R.M., Bekker, A., Bish, D.L., Bleeker, W., Downs, R.T., Farquhar, J., Ferry, J.M., Grew, E.S., Knoll, A.H., Papineau, D., Ralph, J.P., Sverjensky, D.A., Valley, J.W., 2011. Needs and opportunities in mineral evolution research. Am. Mineral. 96, 953–963. Hazen, R.M., Golden, J., Downs, R.T., Hysted, G., Grew, E.S., Azzolini, D., Sverjensky, D.A., 2012. Mercury (Hg) mineral evolution: a mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am. Mineral. 97, 1013–1042. Hazen, R.M., Downs, R.T., Kah, L., Sverjensky, D., 2013. Carbon mineral evolution. In: Hazen, R.M., Jones, A.P., Baross, J.A. (Eds.), Carbon in Earth. vol. 75. Rev. Mineral. Geochem., Washington, DC, pp. 79–107. Hedrick, J.B., Sinha, S.P., Kosynkin, V.D., 1997. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3. J. Alloys Compd. 250, 467–470. Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audetat, A., G€unther, D., Hattendorf, B., Bleiner, D., Guillong, M., Horn, I., 2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass- spectrometry. Geochim. Cosmochim. Acta 67, 3473–3497. Henderson, P., 1996. The rare earth elements: introduction and review. In: Jones, A.P., Wall, F., Williams, C.T. (Eds.), Rare Earth Minerals. The Mineralogical Society Series, vol. 7. Chapman & Hall, London, pp. 1–19. Hildebrand, R.S., 1986. Kiruna-type deposits: their origin and relationship to intermediate subvol- canic plutons in the Great Bear Magmatic Zone, northwest Canada. Econ. Geol. 81, 640–659. Hirano, H., Kamitani, M., Sato, T., Sudo, S., 1990. Niobium mineralization of Catalao I carbonatite complex, Goias, Brazil. Bull. Geol. Surv. Jpn. 41, 577–594. Hofmann, A.W., 2005. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carson, R.W. (Ed.), The Mantle and Core. Treatise of Geochemistry, vol. 2. Elsevier, Amsterdam, pp. 61–101. Hongo, Y., Obata, H., Gamo, T., Nawaseama, M., Ishibashi, J., Konno, U., Saegusa, S., Ohkubo, S., Tsunogai, U., 2007. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin. Geochem. J. 41, 1–15. Horiuchi, Y., Ohno, T., Hoshino, M., Shin, K.-C., Murakami, H., Tsunematsu, M., Watanabe, Y., 2014. Geochemical prospecting for rare earth elements using termite mound materials. Mineral. Deposita 49, 1013–1023. Hornig-Kjarsgaard, I., 1998. Rare earth elements in S€ovitic carbonatites and their mineral phases. J. Petrol. 39, 2105–2121. Horva ́ th, L., 2014. Catalogue of mineral species occurring in Canada. http://www. mineralogicalassociation.ca/doc/catcanmin.pdf#search1⁄4’Catalogue+of+mineral+species +occurring+in+canada’. Hoshino, M., Watanabe, Y., Kon, Y. Contribution of apatite to the crystallization of allanite in an Iron-Oxide-Apatite (IOA) prospect, Benjamin River, Canada. Resour. Geol. (submitted).PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)