PDF Publication Title:
Text from PDF Page: 249
(198) Cañas, N. A.; Wolf, S.; Wagner, N.; Friedrich, K. A. In-situ X-ray diffraction studies of lithium–sulfur batteries. Journal of Power Sources 2013, 226, 313-319. (199) Nelson, J.; Misra, S.; Yang, Y.; Jackson, A.; Liu, Y.; Wang, H.; Dai, H.; Andrews, J. C.; Cui, Y.; Toney, M. F. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. Journal of the American Chemical Society 2012, 134, 6337-6343. (200) Lowe, M. A.; Gao, J.; Abruña, H. D. Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy. RSC Advances 2014, 4, 18347. (201) Lin, C.-N.; Chen, W.-C.; Song, Y.-F.; Wang, C.-C.; Tsai, L.-D.; Wu, N.-L. Understanding dynamics of polysulfide dissolution and re-deposition in working lithium–sulfur battery by in-operando transmission X-ray microscopy. Journal of Power Sources 2014, 263, 98-103. (202) Cuisinier, M.; Cabelguen, P.-E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F. Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy. The Journal of Physical Chemistry Letters 2013, 4, 3227-3232. (203) Patel, M. U.; Arcon, I.; Aquilanti, G.; Stievano, L.; Mali, G.; Dominko, R. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components. Chemphyschem : a European journal of chemical physics and physical chemistry 2014, 15, 894-904. (204) Pascal, T. A.; Wujcik, K. H.; Velasco-Velez, J.; Wu, C.; Teran, A. A.; Kapilashrami, M.; Cabana, J.; Guo, J.; Salmeron, M.; Balsara, N.; Prendergast, D. X-ray Absorption Spectra of Dissolved Polysulfides in Lithium–Sulfur Batteries from First-Principles. The Journal of Physical Chemistry Letters 2014, 5, 1547-1551. (205) Ryu, H. S.; Guo, Z.; Ahn, H. J.; Cho, G. B.; Liu, H. Investigation of discharge reaction mechanism of lithium|liquid electrolyte|sulfur battery. Journal of Power Sources 2009, 189, 1179- 1183. (206) Ryu, H.-S.; Ahn, H.-J.; Kim, K.-W.; Ahn, J.-H.; Lee, J.-Y. Discharge process of Li/PVdF/S cells at room temperature. Journal of Power Sources 2006, 153, 360-364. (207) Yuan, L.; Qiu, X.; Chen, L.; Zhu, W. New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy. Journal of Power Sources 2009, 189, 127-132. (208) Kim, N.-I.; Lee, C.-B.; Seo, J.-M.; Lee, W.-J.; Roh, Y.-B. Correlation between positive- electrode morphology and sulfur utilization in lithium–sulfur battery. Journal of Power Sources 2004, 132, 209-212. (209) Cañas, N. A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K. A.; Hiesgen, R. Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochimica Acta 2013, 97, 42-51. (210) Fronczek, D. N.; Bessler, W. G. Insight into lithium–sulfur batteries: Elementary kinetic modeling and impedance simulation. Journal of Power Sources 2013, 244, 183-188. (211) Kim, C. S.; Guerfi, A.; Hovington, P.; Trottier, J.; Gagnon, C.; Barray, F.; Vijh, A.; Armand, M.; Zaghib, K. Importance of open pore structures with mechanical integrity in designing the cathode electrode for lithium–sulfur batteries. Journal of Power Sources 2013, 241, 554-559. (212) Deng, Z.; Zhang, Z.; Lai, Y.; Liu, J.; Li, J.; Liu, Y. Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading. Journal of the Electrochemical Society 2013, 160, A553-A558. (213) Kolosnitsyn, V. S.; Kuzmina, E. V.; Karaseva, E. V.; Mochalov, S. E. A study of the electrochemical processes in lithium–sulphur cells by impedance spectroscopy. Journal of Power Sources 2011, 196, 1478-1482. (214) Kolosnitsyn, V. S.; Kuzmina, E. V.; Mochalov, S. E. Determination of lithium sulphur batteries internal resistance by the pulsed method during galvanostatic cycling. Journal of Power Sources 2014, 252, 28-34. (215) Barchasz, C.; Leprêtre, J.-C.; Patoux, S.; Alloin, F. Revisiting TEGDME/DIOX Binary Electrolytes for Lithium/Sulfur Batteries: Importance of Solvation Ability and Additives. Journal of The Electrochemical Society 2013, 160, A430-A436. 245 ReferencesPDF Image | Accumulateur Lithium Soufre
PDF Search Title:
Accumulateur Lithium SoufreOriginal File Name Searched:
WALUS_2015_archivage.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)