PDF Publication Title:
Text from PDF Page: 248
(178) Zhang, S. S. Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO3-Contained Electrolyte. Journal of the Electrochemical Society 2012, 159, A920- A923. (179) Lee, D.-J.; Agostini, M.; Park, J.-W.; Sun, Y.-K.; Hassoun, J.; Scrosati, B. Progress in Lithium–Sulfur Batteries: The Effective Role of a Polysulfide-Added Electrolyte as Buffer to Prevent Cathode Dissolution. ChemSusChem 2013, 6, 2245-2248. (180) Xu, R.; Belharouak, I.; Li, J. C. M.; Zhang, X.; Bloom, I.; Bareño, J. Role of Polysulfides in Self-Healing Lithium-Sulfur Batteries. Advanced Energy Materials 2013, 3, 833-838. (181) Lin, Z.; Liu, Z.; Fu, W.; Dudney, N. J.; Liang, C. Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries. Advanced Functional Materials 2013, 23, 1064-1069. (182) Liang, X.; Wen, Z.; Liu, Y.; Wu, M.; Jin, J.; Zhang, H.; Wu, X. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. Journal of Power Sources 2011, 196, 9839-9843. (183) properties of (184) (185) performance 38-41. (186) of lithium metal anodes using silane-based coatings. Electrochemistry Communications 2011, 13, 1369- 1372. (187) Lee, Y. M.; Choi, N.-S.; Park, J. H.; Park, J.-K. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. Journal of Power Sources 2003, 119-121, 964-972. (188) Mikhaylik, Y. Protection of lithium anodes using dual phase electrolytes2011. (189) Hagen, M.; Quiroga-González, E.; Dörfler, S.; Fahrer, G.; Tübke, J.; Hoffmann, M. J.; Althues, H.; Speck, R.; Krampfert, M.; Kaskel, S.; Föll, H. Studies on preventing Li dendrite formation in Li–S batteries by using pre-lithiated Si microwire anodes. Journal of Power Sources 2014, 248, 1058- 1066. (190) Elazari, R.; Salitra, G.; Gershinsky, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Rechargeable lithiated silicon–sulfur (SLS) battery prototypes. Electrochemistry Communications 2012, 14, 21-24. (191) Hassoun, J.; Kim, J.; Lee, D.-J.; Jung, H.-G.; Lee, S.-M.; Sun, Y.-K.; Scrosati, B. A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon–sulfur battery. Journal of Power Sources 2012, 202, 308-313. (192) Brückner, J.; Thieme, S.; Böttger-Hiller, F.; Bauer, I.; Grossmann, H. T.; Strubel, P.; Althues, H.; Spange, S.; Kaskel, S. Carbon-Based Anodes for Lithium Sulfur Full Cells with High Cycle Stability. Advanced Functional Materials 2014, 24, 1284-1289. (193) Hassoun, J.; Scrosati, B. A high-performance polymer tin sulfur lithium ion battery. Angewandte Chemie 2010, 49, 2371-2374. (194) Barchasz, C.; Molton, F.; Duboc, C.; Lepretre, J. C.; Patoux, S.; Alloin, F. Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Analytical chemistry 2012, 84, 3973-3980. (195) Su, Y. S.; Fu, Y.; Guo, B.; Dai, S.; Manthiram, A. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple. Chemistry 2013, 19, 8621-8626. (196) Hagen, M.; Schiffels, P.; Hammer, M.; Dorfler, S.; Tubke, J.; Hoffmann, M. J.; Althues, H.; Kaskel, S. In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells. Journal of the Electrochemical Society 2013, 160, A1205-A1214. (197) Su, Y.-S.; Fu, Y.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium- sulphur batteries for long cycle life. Nature communications 2013, 4. Xiong, S.; Kai, X.; Hong, X.; Diao, Y. Effect of LiBOB as additive on electrochemical lithium–sulfur batteries. Ionics 2012, 18, 249-254. S. Visco et al., U. p., US 20050175894. Kim, H.; Lee, J. T.; Lee, D.-C.; Oschatz, M.; Cho, W. I.; Kaskel, S.; Yushin, G. Enhancing of Li–S cells using a Li–Al alloy anode coating. Electrochemistry Communications 2013, 36, Thompson, R. S.; Schroeder, D. J.; López, C. M.; Neuhold, S.; Vaughey, J. T. Stabilization 244 ReferencesPDF Image | Accumulateur Lithium Soufre
PDF Search Title:
Accumulateur Lithium SoufreOriginal File Name Searched:
WALUS_2015_archivage.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |