PDF Publication Title:
Text from PDF Page: 247
(157) Barchasz, C.; Leprêtre, J.-C.; Patoux, S.; Alloin, F. Electrochemical properties of ether- based electrolytes for lithium/sulfur rechargeable batteries. Electrochimica Acta 2013, 89, 737-743. (158) Choi, J.-W.; Kim, J.-K.; Cheruvally, G.; Ahn, J.-H.; Ahn, H.-J.; Kim, K.-W. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochimica Acta 2007, 52, 2075-2082. (159) Barchasz, C.; Lepretre, J. C.; Patoux, S.; Alloin, F. Revisiting TEGDME/DIOX Binary Electrolytes for Lithium/Sulfur Batteries: Importance of Solvation Ability and Additives. Journal of the Electrochemical Society 2013, 160, A430-A436. (160) Kim, H.-S.; Jeong, C.-S. Electrochemical Properties of Binary Electrolytes for Lithium- sulfur Batteries. Bulletin of the Korean Chemical Society 2011, 32, 3682-3686. (161) Kolosnitsyn, V. S.; Karaseva, E. V.; Shakirova, N. V.; Seung, D. Y.; Cho, M. D. Cycling a Sulfur Electrode in Electrolytes Based on Sulfolane and Linear Ethers (Glymes) in an LiCF3SO3 Solution. Russian Journal of Electrochemistry 2002, 38, 1360-1363. (162) Kolosnitsyn, V.; Kuzmina, E.; Karaseva, E. Influence of Lithium Salts on Physicochemical Properties of Lithium Polysulphide Solutions in Sulfolane. ECS Transactions 2009, 19, 25-30. (163) Dominko, R.; Demir-Cakan, R.; Morcrette, M.; Tarascon, J.-M. Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochemistry Communications 2011, 13, 117- 120. (164) Demir-Cakan, R.; Morcrette, M.; Gangulibabu; Guéguen, A.; Dedryvère, R.; Tarascon, J.- M. Li–S batteries: simple approaches for superior performance. Energy & Environmental Science 2013, 6, 176. (165) Yamin, H.; Gorenshtein, A.; Penciner, J.; Sternberg, Y.; Peled, E. Lithium Sulfur Battery: Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions. Journal of The Electrochemical Society 1988, 135, 1045-1048. (166) Choi, J.-W.; Cheruvally, G.; Kim, D.-S.; Ahn, J.-H.; Kim, K.-W.; Ahn, H.-J. Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. Journal of Power Sources 2008, 183, 441-445. (167) Zhang, S. S.; Tran, D. T. A simple approach for superior performance of lithium/sulphur batteries modified with a gel polymer electrolyte. Journal of Materials Chemistry A 2014, 2, 7383. (168) Zhao, Y.; Zhang, Y.; Gosselink, D.; Doan, T. N.; Sadhu, M.; Cheang, H. J.; Chen, P. Polymer electrolytes for lithium/sulfur batteries. Membranes 2012, 2, 553-564. (169) Sun, X. G.; Wang, X.; Mayes, R. T.; Dai, S. Lithium-sulfur batteries based on nitrogen- doped carbon and an ionic-liquid electrolyte. ChemSusChem 2012, 5, 2079-2085. (170) Wang, J.; Chew, S. Y.; Zhao, Z. W.; Ashraf, S.; Wexler, D.; Chen, J.; Ng, S. H.; Chou, S. L.; Liu, H. K. Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 2008, 46, 229-235. (171) Suo, L.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature communications 2013, 4, 1481. (172) Patel, M. U.; Dominko, R. Application of in operando UV/Vis spectroscopy in lithium- sulfur batteries. ChemSusChem 2014, 7, 2167-2175. (173) Lu, Y.-C.; He, Q.; Gasteiger, H. A. Probing the Lithium–Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study. The Journal of Physical Chemistry C 2014, 118, 5733-5741. (174) Kim, H. S.; Jeong, C.-S.; Kim, Y.-T. Shuttle inhibitor effect of lithium perchlorate as an electrolyte salt for lithium–sulfur batteries. Journal of Applied Electrochemistry 2011, 42, 75-79. (175) Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. Comparative study of EC/DMC LiTFSI and LiPF< sub> 6 electrolytes for electrochemical storage. Journal of Power Sources 2011, 196, 9743-9750. (176) Myung, S.-T.; Hitoshi, Y.; Sun, Y.-K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry 2011, 21, 9891-9911. (177) Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta 2012, 70, 344-348. 243 ReferencesPDF Image | Accumulateur Lithium Soufre
PDF Search Title:
Accumulateur Lithium SoufreOriginal File Name Searched:
WALUS_2015_archivage.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)