logo

Accumulateur Lithium Soufre

PDF Publication Title:

Accumulateur Lithium Soufre ( accumulateur-lithium-soufre )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 244

(98) Wang, B.; Wen, Y.; Ye, D.; Yu, H.; Sun, B.; Wang, G.; Hulicova-Jurcakova, D.; Wang, L. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium-sulfur batteries. Chemistry 2014, 20, 5224-5230. (99) Wang, Y.-X.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. The electrochemical properties of high- capacity sulfur/reduced graphene oxide with different electrolyte systems. Journal of Power Sources 2013, 244, 240-245. (100) Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society 2011, 133, 18522-18525. (101) Wang, X.; Wang, Z.; Chen, L. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. Journal of Power Sources 2013, 242, 65-69. (102) Evers, S.; Nazar, L. F. New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes. Accounts of Chemical Research 2012, 46, 1135-1143. (103) Zhang, S. S.; Tran, D. T. A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density. Journal of Power Sources 2012, 211, 169-172. (104) Hagen, M.; Dörfler, S.; Fanz, P.; Berger, T.; Speck, R.; Tübke, J.; Althues, H.; Hoffmann, M. J.; Scherr, C.; Kaskel, S. Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. Journal of Power Sources 2013, 224, 260-268. (105) Zheng, J.; Lv, D.; Gu, M.; Wang, C.; Zhang, J. G.; Liu, J.; Xiao, J. How to Obtain Reproducible Results for Lithium Sulfur Batteries? Journal of the Electrochemical Society 2013, 160, A2288-A2292. (106) Zhang, S. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio. Energies 2012, 5, 5190-5197. (107) Lacey, M. J.; Jeschull, F.; Edström, K.; Brandell, D. Functional, water-soluble binders for improved capacity and stability of lithium–sulfur batteries. Journal of Power Sources 2014, 264, 8-14. (108) Schneider, H.; Garsuch, A.; Panchenko, A.; Gronwald, O.; Janssen, N.; Novák, P. Influence of different electrode compositions and binder materials on the performance of lithium– sulfur batteries. Journal of Power Sources 2012, 205, 420-425. (109) Urbonaite, S.; Novák, P. Importance of ‘unimportant’ experimental parameters in Li–S battery development. Journal of Power Sources 2014, 249, 497-502. (110) Lacey, M. J.; Jeschull, F.; Edström, K.; Brandell, D. Porosity Blocking in Highly Porous Carbon Black by PVdF Binder and Its Implications for the Li–S System. The Journal of Physical Chemistry C 2014. (111) He, M.; Yuan, L.-X.; Zhang, W.-X.; Hu, X.-L.; Huang, Y.-H. Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder. The Journal of Physical Chemistry C 2011, 115, 15703- 15709. (112) Sun, J.; Huang, Y.; Wang, W.; Yu, Z.; Wang, A.; Yuan, K. Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries. Electrochimica Acta 2008, 53, 7084-7088. (113) Wang, H.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Im, D.; Lee, D.; Imanishi, N. Interface Properties between Lithium Metal and a Composite Polymer Electrolyte of PEO18Li(CF3SO2)2N- Tetraethylene Glycol Dimethyl Ether. Membranes 2013, 3, 298-310. (114) Lacey, M. J.; Jeschull, F.; Edstrom, K.; Brandell, D. Why PEO as a binder or polymer coating increases capacity in the Li-S system. Chemical communications 2013, 49, 8531-8533. (115) Xu, G.; Ding, B.; Pan, J.; Nie, P.; Shen, L.; Zhang, X. High performance lithium–sulfur batteries: advances and challenges. Journal of Materials Chemistry A 2014, 2, 12662. (116) Lacey, M. J.; Jeschull, F.; Edström, K.; Brandell, D. Porosity Blocking in Highly Porous Carbon Black by PVdF Binder and Its Implications for the Li–S System. The Journal of Physical Chemistry C 2014, 118, 25890-25898. (117) Wang, Y.; Huang, Y.; Wang, W.; Huang, C.; Yu, Z.; Zhang, H.; Sun, J.; Wang, A.; Yuan, K. Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge. Electrochimica Acta 2009, 54, 4062-4066. 240 References

PDF Image | Accumulateur Lithium Soufre

accumulateur-lithium-soufre-244

PDF Search Title:

Accumulateur Lithium Soufre

Original File Name Searched:

WALUS_2015_archivage.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP