PDF Publication Title:
Text from PDF Page: 243
(80) Wang, Z.; Dou, Z.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Sulfur encapsulated ZIF-8 as cathode material for lithium–sulfur battery with improved cyclability. Microporous and Mesoporous Materials 2014, 185, 92-96. (81) Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries. Journal of Materials Chemistry A 2014, 2, 8854. (82) Ding, B.; Shen, L.; Xu, G.; Nie, P.; Zhang, X. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochimica Acta 2013, 107, 78-84. (83) Li, Q.; Zhang, Z.; Zhang, K.; Xu, L.; Fang, J.; Lai, Y.; Li, J. Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries. Journal of Solid State Electrochemistry 2013, 17, 2959-2965. (84) Ji, X.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nature communications 2011, 2, 325. (85) Zhang, Y.; Bakenov, Z.; Zhao, Y.; Konarov, A.; Doan, T. N. L.; Sun, K. E. K.; Yermukhambetova, A.; Chen, P. Effect of nanosized Mg0.6Ni0.4O prepared by self-propagating high temperature synthesis on sulfur cathode performance in Li/S batteries. Powder Technology 2013, 235, 248-255. (86) Zhang, Y.; Wu, X.; Feng, H.; Wang, L.; Zhang, A.; Xia, T.; Dong, H. Effect of nanosized Mg0.8Cu0.2O on electrochemical properties of Li/S rechargeable batteries. International Journal of Hydrogen Energy 2009, 34, 1556-1559. (87) Sun, F.; Wang, J.; Long, D.; Qiao, W.; Ling, L.; Lv, C.; Cai, R. A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. Journal of Materials Chemistry A 2013, 1, 13283. (88) Evers, S.; Yim, T.; Nazar, L. F. Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery. The Journal of Physical Chemistry C 2012, 116, 19653-19658. (89) Xu, G.; Ding, B.; Nie, P.; Shen, L.; Wang, J.; Zhang, X. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Chemistry 2013, 19, 12306-12312. (90) Ahn, W.; Kim, K.-B.; Jung, K.-N.; Shin, K.-H.; Jin, C.-S. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. Journal of Power Sources 2012, 202, 394-399. (91) Wei, W.; Wang, J.; Zhou, L.; Yang, J.; Schumann, B.; NuLi, Y. CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochemistry Communications 2011, 13, 399-402. (92) Zhu, L.; Zhu, W.; Cheng, X.-B.; Huang, J.-Q.; Peng, H.-J.; Yang, S.-H.; Zhang, Q. Cathode materials based on carbon nanotubes for high-energy-density lithium–sulfur batteries. Carbon 2014, 75, 161-168. (93) Geng, X.; Rao, M.; Li, X.; Li, W. Highly dispersed sulfur in multi-walled carbon nanotubes for lithium/sulfur battery. Journal of Solid State Electrochemistry 2012, 17, 987-992. (94) Deng, Z.-f.; Zhang, Z.-a.; Lu, H.; Lai, Y.-q.; Liu, J.; Li, J.; Liu, Y.-x. Vapor-grown carbon fibers enhanced sulfur-multi walled carbon nanotubes composite cathode for lithium/sulfur batteries. Transactions of Nonferrous Metals Society of China 2014, 24, 158-163. (95) Rao, M.; Song, X.; Cairns, E. J. Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells. Journal of Power Sources 2012, 205, 474-478. (96) Wang, J.-Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H.-K. Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources 2011, 196, 7030-7034. (97) Cao, Y.; Li, X.; Aksay, I. A.; Lemmon, J.; Nie, Z.; Yang, Z.; Liu, J. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Physical chemistry chemical physics : PCCP 2011, 13, 7660-7665. 239 ReferencesPDF Image | Accumulateur Lithium Soufre
PDF Search Title:
Accumulateur Lithium SoufreOriginal File Name Searched:
WALUS_2015_archivage.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)