PDF Publication Title:
Text from PDF Page: 239
References (1) http://www.bp.com/en/global/corporate/about-bp/energy-economics.html. (2) Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional materials for rechargeable batteries. Adv Mater 2011, 23, 1695-1715. (3) Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334, 928-935. (4) Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367. (5) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nature materials 2012, 11, 19-29. (6) http://www.technologyreview.com/. (7) http://sulfur.nigc.ir/en/sulfurproductionprocess. (8) Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Rechargeable Lithium-Sulfur Batteries. Chemical reviews 2014. (9) http://www.sionpower.com/. (10) http://www.oxisenergy.com/. (11) Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive Electrode Materials for Li-Ion and Li- BaBeries†. Chemistry of Materials 2010, 22, 691-714. (12) Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ionics 2008, 179, 752-760. (13) http://www.nohms.com/. (14) Herbert, D.; Ulam, J.: Electric dry cells and storage batteries. U.S. Patent 3043896, 1962. (15) Rauh, R. D.; Abraham, K. M.; Pearson, G. F.; Surprenant, J. K.; Brummer, S. B. A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte. Journal of The Electrochemical Society 1979, 126, 523-527. (16) Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie 2012, 51, 9994-10024. (17) Manthiram, A.; Fu, Y.; Su, Y.-S. Challenges and Prospects of Lithium–Sulfur Batteries. Accounts of Chemical Research 2012, 46, 1125-1134. (18) Ji, X.; Nazar, L. F. Advances in Li–S batteries. Journal of Materials Chemistry 2010, 20, 9821. (19) Greenwood, N. N. & Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann. (20) Templeton, L. K.; Templeton, D. H.; Zalkin, A. Crystal structure of monoclinic sulfur. Inorganic Chemistry 1976, 15, 1999-2001. (21) Pastorino, C.; Gamba, Z. Toward an anisotropic atom–atom model for the crystalline phases of the molecular S8 compound. The Journal of Chemical Physics 2001, 115, 9421-9426. (22) Pastorino, C.; Gamba, Z. Test of a simple and flexible molecule model for α-, β-, and γ- S8 crystals. The Journal of Chemical Physics 2000, 112, 282-286. (23) Walus, S.; Barchasz, C.; Colin, J. F.; Martin, J. F.; Elkaim, E.; Lepretre, J. C.; Alloin, F. New insight into the working mechanism of lithium-sulfur batteries: in situ and operando X-ray diffraction characterization. Chemical communications 2013, 49, 7899-7901. References 235PDF Image | Accumulateur Lithium Soufre
PDF Search Title:
Accumulateur Lithium SoufreOriginal File Name Searched:
WALUS_2015_archivage.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |