Infinity Turbine LLC


Publication Title | Technologies to recover exhaust heat from internal combustion engines

Organic Rankine Cycle

Waste Heat to Power ORC search was updated real-time via Filemaker on:

Waste Heat to Power ORC | Return to Search List

Search Completed | Title | Technologies to recover exhaust heat from internal combustion engines
Original File Name Searched: Dr.Saidur_Techn.pdf | Google It | Yahoo | Bing



Page Number: 001
Previous Page View | Next Page View

Text | Technologies to recover exhaust heat from internal combustion engines | 001



article info

Article history:

Received 11 August 2011 Received in revised form 8 May 2012

Accepted 8 May 2012

Keywords:

Waste heat recovery

Waste heat recovery technologies Internal combustion engine

Contents

abstract

The focus of this study is to review the latest developments and technologies on waste heat recovery of exhaust gas from internal combustion engines (ICE). These include thermoelectric generators (TEG), organic Rankine cycle (ORC), six-stroke cycle IC engine and new developments on turbocharger technology. Furthermore, the study looked into the potential energy savings and performances of those technologies. The current worldwide trend of increasing energy demand in transportation sector are one of the many segments that is responsible for the growing share of fossil fuel usage and indirectly contribute to the release of harmful greenhouse gas (GHG) emissions. It is hoped that with the latest findings on exhaust heat recovery to increase the efficiency of ICEs, world energy demand on the depleting fossil fuel reserves would be reduced and hence the impact of global warming due to the GHG emissions would fade away.

& 2012 Elsevier Ltd. All rights reserved.

Renewable and Sustainable Energy Reviews 16 (2012) 5649–5659

Contents lists available at SciVerse ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Technologies to recover exhaust heat from internal combustion engines R. Saidur a, M. Rezaei a, W.K. Muzammil a, M.H. Hassan a, S. Paria a, M. Hasanuzzaman b,n

a Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

b UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, 59990 Kuala Lumpur, Malaysia

1. Introduction.....................................................................................................5650

2. Thermoelectricenergyconversiontechnology..........................................................................5651

2.1. Backgroundofthermoelectricgenerator.........................................................................5651

2.2. TEGintheautomotiveindustry ...............................................................................5652

2.3. ChallengesofTEG...........................................................................................5652

2.4. RecentdevelopmentofTEGinautomotiveindustry ...............................................................5652

3. Six-strokeinternalcombustionenginecycle ...........................................................................5653

4. Rankinebottomingcycletechnique ..................................................................................5653

4.1. Backgroundofthetechnique..................................................................................5653

4.2. WorkingfluidsinRankinecycle...............................................................................5654

4.3. Considerationsofworkingfluids...............................................................................5654

4.3.1. Typesofworkingfluids.............................................................................. 5654

4.3.2. Latentheat,densityandspecificheatofworkingfluids .................................................... 5654

4.4. Analysis of Rankine bottoming cycle in a vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5655

4.5. Rankinebottomingcycleintheautomotiveindustry ..............................................................5655

5. Turbocharger....................................................................................................5655

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5655

5.2. Challenges of turbocharger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5656

5.2.1. Variablegeometryturbine—Reducingturbolag........................................................... 5656

Abbreviations: A/R, Aspect ratio; B, Biodiesel; BASIC, Beginner’s all-purpose symbolic instruction code; BiTe, Bismuth telluride; BPV, Bypass valve; BTDC, Before top dead center; CeFeSb, Skutterudite; CHRA, Center housing and rotating assembly; CI, Compression ignition; CO, Carbon monoxide; DF, Diesel fuel; DI, Direct injection; EGR, Exhaust gas recirculation; GDP, Gross domestic product; GHG, Greenhouse gas; HCCI, Homogenous charge compression ignition; HCPC, Homogenous charge progressive combustion; HEV, Hybrid electric vehicle; ICE, Internal combustion engine; ISFC, Indicated specific fuel consumption; K, Total thermal conductivity; MEP, Mean effective pressure; MPPT, Maximum power point tracker; NA, Naturally aspirated; NO, Nitric oxide; NOx, Nitrogen oxide; ORC, Organic Rankine cycle; PV, Photovoltaic; PVG, Photovoltaic generator; r, Electrical resistance; S, Thermo power; SI, Spark ignition; Sin, Sustainability index; SiGe, Silicon germanium; SnTe, Tin telluride; T, Absolute temperature; TEG, Thermoelectric generator; TU, Turbocharged; VGT, Variable geometry turbocharger; VNT, Variable nozzle turbocharger; WEDACS, Waste energy driven air conditioning system; WHR, Waste heat recovery; Z, Figure of merit; ZnBe, Zinc-beryllium; c, Exergy efficiency

n Corresponding author. Tel.: þ603 22463246; fax: þ603 22463257.

E-mail addresses: hasan@um.edu.my, hasan.buet99@gmail.com (M. Hasanuzzaman).

1364-0321/$ - see front matter & 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.rser.2012.05.018

Image | Technologies to recover exhaust heat from internal combustion engines



technologies-recover-exhaust-heat-from-internal-combustion-engines
Waste Heat to Power - ORC - - Waste Heat to Power System - Go to website

Search Engine Contact: greg@infinityturbine.com